	Name
Last Unit Variables \& Patterns	ching \& Shrinking
1. Dilation: $(2 x, 2 y)$, multiplication rules, proportional enlarge or shrink (.5x,.5y) 2. Translation ($x+2, y-4$), add \& subtract rules, moves a shape. 3. Reflection: "flip" 4. Rotation: "turn"	

	Learning Targets	I understandMATHEMATICAL SIMILARITYThat means... A. I know the definition of similar and congruel) same size, same shape, $\mathrm{sf}=1$ B. I can tell if 2 figures are mathematically similar. C. I can write rules to translate and dilate figures. D. I can find the missing length of similar figures. symbol is \cong E. I can determine corresponding angles and sides of similar figures. F. I can find the scale factor and area factor between 2 similar figures. G. I can use similarity to solve real-world problems.	
1. Corresponding Sides/ Corresponding Angles: matching sides, in the same location on the shape			2. Scale Factor how many times LONGER the side lengths get. enlarge: s.f. greater than 1 shrink: s.f. between 0 and 1
O 0 0 0 	3. Area how m Area fa	tor: times BIGGER the AREA get $\begin{gathered} \text { or = scale factor } X \text { scale factor } \\ (\text { s.f. })^{2} \end{gathered}$	4. Similar: 1. same shape symbol is \sim, 2. same angle measures 3. grow proportionally, same scale factor
	5. Dilat enlar mult	r shrink proportionally, ation rules!	6. Translate move a figure, addition/subtraction rules. up-add to y right-add to x down - subtract from y left-subtract from x

